If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+15X+39=0
a = 1; b = 15; c = +39;
Δ = b2-4ac
Δ = 152-4·1·39
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{69}}{2*1}=\frac{-15-\sqrt{69}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{69}}{2*1}=\frac{-15+\sqrt{69}}{2} $
| 11a^2+10a=-2 | | 5n+n-3n-n+2n=4 | | 3x+1=-x-1 | | 3x+3=-x+5 | | 3x-3+4=2-x+3 | | 2(103-x)=10(2x+3) | | 2.5x+.5x=3.5+3.5x | | (2x-10)+(3x-20)+5x+3x=360 | | 3c+3c-3c+5c=16 | | 25-u=162 | | -109.3=o-184.9 | | 10=x+54 | | 6n^2+48n+42=0 | | 10y=60=180 | | 486=12+6x/11 | | 0.5(–4+6x)=13x+23(x+9) | | 5.8.1=r | | 7(-2x-2)=-154+7x | | 5v-1=-1 | | 20=-x+8 | | 2c=9=13 | | 7x-2x-4=42 | | 3.3g+3=1.3g+13 | | 13+2p=1 | | x/2x+2=27/40 | | 2(c+8)-6=9c+3 | | 4m+5-3m=-9 | | 5u-5=35 | | 23b=92 | | -a/3+8=10 | | (2^4x)=2^x+9 | | 64x2-5=20 |